
Proof: Asymptotic Equivalence of Matching Weights and Matching Estimands 2016–05–24

1 Proof for the two group setting

1.1 Estimand of Matching

This proof essentially follows the structure of the proof in the appendix of Li & Greene’s 2013 paper[1].

The initial expression for the sample mean outcome in the matched treated group appears di↵erent from theirs, i.e.,
PK

k=1

Pn
i=1 YiI(i2S1k)PK

k=1

Pn
i=1 I(i2S1k)

where k is an index over discrete values of propensity scores, however both are the equivalent

sample marginal mean outcome in the matched treated group. Instead of the explicit sum over k, we define a

specific structure for the matched set.

The usual causal inference assumptions[2] are all required. The first is conditional exchangeability (un-

confoundedness) given a function of the covariate vector Xi including the vector itself (finest balancing score) or

the propensity score (coarsest balancing score). The latter requires no model misspecification for the propensity

score model. The second is consistency, i.e., Yi = ZiY1i + (1 � Zi)Y0i. That is, the observed outcome is the

counterfactual potential outcome corresponding to the treatment received. This requires well-defined treatment

and non-interference among individuals’ potential outcomes. The third is positivity, i.e., at any level of Xi (and

thus propensity score), both treatment choices have non-zero (positive) probability. In this setting, this implies a

perfect common support, i.e., any propensity score values present in one of the treatment groups are also present

in the other group.

Additional assumptions are required for the propensity score matching process. Matching has to be 1:1

matching without replacement. It also has to be exact matching on propensity scores (no calipers are allowed).

This necessarily requires discrete propensity scores taking on a finite set of values because there has to be a positive

probability of finding an exact match across two treatment groups[1]. The set of values can be arbitrarily large

as long as its size is bounded and does not grow with the sample size n. When multiple untreated candidates are

available for matching a treated individual at a given propensity score (< 0.5), one is selected at random. The same

should apply when there are more treated individuals than untreated individuals at a given propensity score (> 0.5).

Proof : Let l 2 {1, 2, ..., L} be the index for the propensity score matched pairs. Let S1l be the single member set

of the treated subject from the l-th matched pair and the S0l be the corresponding set of the untreated subject.

Thus, S1 =
LS

l=1
S1l is the set of matched treated subjects, S0 =

LS
l=1

S0l is the set of matched untreated subjects, and

S = S0 [ S1 is the set of the entire matched cohort. This matched cohort is balanced, i.e., both groups contain the

same number (L) of matched subjects. Index n is over the entire dataset before matching, thus, it includes subjects

who do not match. The group mean in the matched treated group is expressed as follows. The selection indicator

is e↵ectively acting as a 0, 1 weight.

Pn
i=1 YiI(i 2 S1)Pn
i=1 I(i 2 S1)

The numerator is examined first. The expression is multiplied by 1
n , but it cancels out in the original
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Proof: Asymptotic Equivalence of Matching Weights and Matching Estimands 2016–05–24

expression as we do the same for the denominator. Yi is the observed outcome of the i-th subject, whereas Y1i is

the treated counterfactual potential outcome of the i-th subject.

By consistency, the treated counterfactual is observed among the treated.

Only the treated contribute to the expression, thus, Yi = Y1i.

1

n

nX

i=1

YiI(i 2 S1) =
1

n

nX

i=1

Y1iI(i 2 S1)

Asymptotically, by the Weak Law of Large Number

p! E[Y1iI(i 2 S1)]

Rewrite as an iterative expectation.

= E[E[Y1iI(i 2 S1)|Xi]]

Break the indicator into selection and treatment.

= E[E[Y1iI(i 2 S)I(Zi = 1)|Xi]]

* only the treated subjects contribute to the inner expectation,

and otherwise it is zero, expectation can be taken

in the treated and weighted by its prevalence.

= E[E[Y1iI(i 2 S)|Zi = 1,Xi]P (Zi = 1|Xi)]

* given Zi = 1 and within levels of Xi, selection (i 2 S) is random,

Y1i and selection indicator are conditionally independent.

= E[E[Y1i|Zi = 1,Xi]E[I(i 2 S)|Zi = 1,Xi]P (Zi = 1|Xi)]

By conditional exchangeability, E[Y1i|Zi = 1,Xi] = E[Y1i|Zi = 0,Xi] = E[Y1i|Xi].

= E[E[Y1i|Xi]E[I(i 2 S)|Zi = 1,Xi]P (Zi = 1|Xi)]

* expectation of a 0,1 selection indicator is the selection probability.

= E[E[Y1i|Xi]P (i 2 S|Zi = 1,Xi)P (Zi = 1|Xi)]

The last term is the propensity score by definition.

= E[E[Y1i|Xi]P (i 2 S|Zi = 1,Xi) ei]

At a given Xi, only the smaller group can match fully.

ei is the fraction of the treated group at a given Xi.

min(ei, 1� ei) is the fraction of the smaller group at Xi.

⇧ among the treated group, only
min(ei, 1� ei)

ei
can match.

As this is a function of Xi, conditioning is implicit.

= E


E[Y1i|Xi]

min(ei, 1� ei)

ei
ei

�
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= E [E[Y1i|Xi]min(ei, 1� ei)]

The denominator is a simplified version of the above proof.

1

n

nX

i=1

I(i 2 S1) =
1

n

nX

i=1

I(i 2 S1)

p! E[I(i 2 S1)]

= E[E[I(i 2 S1)|Xi]]

= E[E[I(i 2 S)I(Zi = 1)|Xi]]

= E[E[I(i 2 S)|Zi = 1,Xi]P (Zi = 1|Xi)]]

= E[P (i 2 S|Zi = 1,Xi)P (Zi = 1|Xi)]]

= E[P (i 2 S|Zi = 1,Xi) ei]

= E


min(ei, 1� ei)

ei
ei

�

= E [min(ei, 1� ei)]

Therefore, the estimand of the group mean of the matched treated cohort is asymptotically the following.

E [E[Y1i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

Similarly, the estimand of the group mean of the matched untreated cohort is asymptotically the following.

E [E[Y0i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

Using these, the estimand of the group mean di↵erence is

�̂M =

Pn
i=1 YiI(i 2 S1)Pn
i=1 I(i 2 S1)

�
Pn

i=1 YiI(i 2 S0)Pn
i=1 I(i 2 S0)

=

Pn
i=1 Y1iI(i 2 S1)Pn
i=1 I(i 2 S1)

�
Pn

i=1 Y0iI(i 2 S0)Pn
i=1 I(i 2 S0)

p! E [E[Y1i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]
� E [E[Y0i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

=
E [E[Y1i|Xi]min(ei, 1� ei)� E [E[Y0i|Xi]min(ei, 1� ei)]]

E [min(ei, 1� ei)]

=
E [(E[Y1i|Xi]� E[Y0i|Xi])min(ei, 1� ei)]

E [min(ei, 1� ei)]

=
E [E[Y1i � Y0i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]
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=
E [�imin(ei, 1� ei)]

E [min(ei, 1� ei)]

where �i is the causal e↵ect given covariates.

1.2 Estimand of Matching Weight

The corresponding matching weight estimator of the mean outcome in the treated is the following. The

same causal inference assumptions are required except for the additional assumptions required for the matching

algorithm.

Pn
i=1 YiZiWiPn
i=1 ZiWi

where

Wi =
min(ei, 1� ei)

Ziei + (1� Zi)(1� ei)

i.e., Wi is a function of covariates Xi and treatment Zi.

The numerator has the following asymptotic characteristic.

By consistency, the treated counterfactual is observed among the treated.

Only the treated contribute to the expression, thus, Yi = Y1i.

1

n

nX

i=1

YiZiWi =
1

n

nX

i=1

Y1iZiWi

Asymptotically, by the Weak Law of Large Number

p! E[Y1iZiWi]

Rewrite as an iterative expectation.

= E[E[Y1iZiWi|Xi]]

* (Y1i, Y0i) ?? Zi|Xi implies (Y1i, Y0i) ?? f(Xi, Zi)|Xi,

the following holds (Y1i, Y0i) ?? ZiWi|Xi

= E[E[Y1i|Xi]E[ZiWi|Xi]]

* only the treated units contribute to the second term,

and otherwise it is zero, expectation can be taken

in the treated and weighted by its prevalence.

= E[E[Y1i|Xi]E[Wi|Zi = 1,Xi]P (Zi = 1|Xi)]

The last term is the propensity score by definition.

Also expand the weight.
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= E

"
E[Y1i|Xi]E

"
min(ei, 1� ei)

Ziei + (1� Zi)(1� ei)

�����Zi = 1,Xi

#
ei

#

* Zi = 1 for the second term

= E


E[Y1i|Xi]

min(ei, 1� ei)

ei
ei

�

= E [E[Y1i|Xi]min(ei, 1� ei)]

Similarly, the denominator has the following asymptotic characteristic.

1

n

nX

i=1

ZiWi
p! E[ZiWi]

= E[E[ZiWi|Xi]]

= E[E[Wi|Zi = 1,Xi]P (Zi = 1|Xi)]

= E

"
E

"
min(ei, 1� ei)

Ziei + (1� Zi)(1� ei)

�����Zi = 1,Xi

#
ei

#

= E


min(ei, 1� ei)

ei
ei

�

= E [min(ei, 1� ei)]

Therefore, the estimand of matching weight estimator for the treated group mean has the same form as

the corresponding matching estimator asymptotically.

Pn
i=1 YiZiWiPn
i=1 ZiWi

=

Pn
i=1 Y1iZiWiPn
i=1 ZiWi

p! E [E[Y1i|Xi]min(ei, 1� ei)]

E [min(ei, 1� ei)]

Because this holds similarly for the untreated group, the estimand of the treatment e↵ect is also asymp-

totically equivalent.
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2 Extension to 3+ group settings

In the previous proof following Li & Greene 2013, the e↵ect estimate was compared between the matching

method and the matching weight method. Proving the asymptotic equivalence of the estimand of an arbitrary

group-specific mean outcome in 3+ group setting will generalize the proof. The same assumptions are required on

all the treatment groups under study.

2.1 Estimand of Matching in 3+ group setting

One propensity score is defined for each treatment group. For the k-th treatment group, eki is the cor-

responding treatment-specific propensity score, i.e., the probability of being assigned to the k-th treatment group

for the i-th subject given covariates. The treatment-specific propensity scores must be formed in such a way that

within an individual subject
KP

k=1
eki = 1 is met. This requires a single model be fit for estimation (e.g., multinomial

logistic regression).

The same assumptions as the two group setting are required. Regarding the matching process now it is

a simultaneous 1 : 1 : ... : 1 exact matching of K treatment groups on their K treatment-specific propensity scores

without replacement. That is, K individuals with the identical propensity scores (all of the treatment-specific

propensity scores, e1i, . . . , eKi must match up across K individuals) form a matched unit. If there are multiple

candidates from a given treatment group k, the selection is random.

Proof : Let Skl be the single member set of the subject in the k-th treatment group (k 2 {1, 2, ...,K}) from the l-th

propensity score matched unit (l 2 {1, 2, ..., L}). Thus, Sk =
LS

l=1
Skl is the set of all matched subjects in the k-th

treatment group, and S =
KS

k=1
Sk is the set of entire matched cohort. This matched cohort is balanced, i.e., each one

of K treatment groups contain the same number (L) of matched subjects. Index n is still over all individuals in the

dataset before matching. The treatment variable, Zi is now a nominal variable 1, 2, ...,K indicating the treatment

group. The group mean in the k-th group is expressed as follows.

Pn
i=1 YiI(i 2 Sk)Pn
i=1 I(i 2 Sk)

The numerator is examined first. The expression is multiplied by 1
n , but it cancels in the original expression

as we do the same for the denominator. For the most part the proof is almost identical to the previous one.

By consistency, the k-th counterfactual is observed in the k-th group

Also only the k-th group contributes to the expression, thus, Yi = Yki

1

n

nX

i=1

YiI(i 2 Sk) =
1

n

nX

i=1

YkiI(i 2 Sk)
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Asymptotically, by the Weak Law of Large Number

p! E[YkiI(i 2 Sk)]

Rewrite as an iterative expectation.

= E[E[YkiI(i 2 Sk)|Xi]]

Break the indicator into selection and treatment.

= E[E[YkiI(i 2 S)I(Zi = k)|Xi]]

* only the k-th group contributes to the inner expectation,

and otherwise it is zero, expectation can be taken

in the k-th group and weighted by its prevalence.

= E[E[YkiI(i 2 S)|Zi = k,Xi]P (Zi = k|Xi)]

* given Zi = k and within levels of Xi, selection (i 2 S) is random,

Yki and selection indicator are conditionally independent.

= E[E[Yki|Zi = k,Xi]E[I(i 2 S)|Zi = k,Xi]P (Zi = k|Xi)]

By conditional exchangeability, E[Yki|Zi = k,Xi] = E[Yki|Xi].

= E[E[Yki|Xi]E[I(i 2 S)|Zi = k,Xi]P (Zi = k|Xi)]

* expectation of a 0,1 selection indicator is the selection probability.

= E[E[Yki|Xi]P (i 2 S|Zi = k,Xi)P (Zi = k|Xi)]

The last term is the PS for the k-th treatment by definition.

= E[E[Yki|Xi]P (i 2 S|Zi = k,Xi) eki]

At a given Xi, only the smallest group can match fully.

eki is the fraction of k-th group at a given Xi.

min(e1i, e2i, ..., eKi) is the fraction of the smallest group at Xi.

⇧ Among the k-th group, only
min(e1i, e2i, ..., eKi)

eki
can match.

As this is a function of Xi, conditioning is implicit.

= E


E[Yki|Xi]

min(e1i, e2i, ..., eKi)

eki
eki

�

= E [E[Yki|Xi]min(e1i, e2i, ..., eKi)]

Similarly,

1

n

nX

i=1

I(i 2 Sk) =
1

n

nX

i=1

I(i 2 Sk)

p! E [min(e1i, e2i, ..., eKi)]
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Therefore, the estimand of the group mean of the matched k-th group is asymptotically the following.

E [E[Yki|Xi]min(e1i, e2i, ..., eKi)]

E [min(e1i, e2i, ..., eKi)]

2.2 Estimand of Matching Weight in 3+ group setting

The corresponding weighted estimator of the mean outcome in the treated is the following. The denomi-

nator of the weight picks the propensity score for the assigned treatment for the i-th unit.

Pn
i=1 YiI(Zi = k)WiPn
i=1 I(Zi = k)Wi

where

Wi =
min(e1i, e2i, ..., eKi)PK

k=1 I(Zi = k)eki

The numerator has the following asymptotic characteristic.

By consistency, the k-th counterfactual is observed in the k-th group

Also only the k-th group contributes to the expression, thus, Yi = Yki

1

n

nX

i=1

YiI(Zi = k)Wi =
1

n

nX

i=1

YkiI(Zi = k)Wi

Asymptotically, by the Weak Law of Large Number

p! E[YkiI(Zi = k)Wi]

Rewrite as an iterative expectation.

= E[E[YkiI(Zi = k)Wi|Xi]]

* Yki ?? Zi|Xi implies Yki ?? f(Xi, Zi)|Xi,

the following holds Yki ?? I(Zi = k)Wi|Xi

= E[E[Yki|Xi]E[I(Zi = k)Wi|Xi]]

* only the k-th group contributes to the second term,

and otherwise it is zero, expectation can be taken

in the k-th group and weighted by its prevalence.

= E[E[Yki|Xi]E[Wi|Zi = k,Xi]P (Zi = k|Xi)]

The last term is the propensity score for the k-th treatment.

Also expand the weight.
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= E

"
E[Yki|Xi]E

"
min(e1i, e2i, ..., eKi)PK

k=1 I(Zi = k)eki

�����Zi = k,Xi

#
eki

#

* Zi = k for the second term

= E


E[Yki|Xi]

min(e1i, e2i, ..., eKi)

eki
eki

�

= E [E[Yki|Xi]min(e1i, e2i, ..., eKi)]

Similarly,

1

n

nX

i=1

I(Zi = k)Wi
p! E[I(Zi = k)Wi]

= E [min(e1i, e2i, ..., eKi)]

Therefore, the estimand of matching weight estimator has the same form as the matching estimator

asymptotically.

Pn
i=1 YiI(Zi = k)WiPn
i=1 I(Zi = k)Wi

=

Pn
i=1 YkiI(Zi = k)WiPn
i=1 I(Zi = k)Wi

p! E [E[Yki|Xi]min(e1i, e2i, ..., eKi)]

E [min(e1i, e2i, ..., eKi)]

Because this holds true for each treatment group, the estimand of any two group contrast e↵ect is also

asymptotically equivalent between the multi-way matching method and the matching weight method.
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Data Generation Mechanism 2016–05–24

1 Data Generation Mechanism DAG

The covariate were generated following the data generation process of Franklin et al [1]. The treatment
assignment process also followed that of Franklin et al [1], but was extended to the three treatment group setting
using a multinomial logistic model[2, 3]. The outcome model was a log-probability model to avoid non-collapsibility
issues[4, 5].

1.1 Annotated Directed Acyclic Graph

Xi is a vector of ten covariates for the i-th individual, Ti 2 {0, 1, 2} is the treatment level, and Yi 2 {0, 1}
is the binary outcome.

Ti

Xi

Yi

�T1,�T2 (main e↵ects)
for treatment e↵ects

�XT1,�XT2 (interactions)
for additional treatment e↵ects in subset

↵10,↵20 (intercepts)
for treatment prevalence

↵1X ,↵2X (covariate association)
for covariate overlap level

�0 (intercept)
for baseline risk of disease
�X (covariate association)
for strength of risk factors

1.2 Covariate Generation

The covariate vector for the i-th individual, Xi had the following random elements[1].

Variable Generation Process
X1i Normal(0, 12)
X2i Log-Normal(0, 0.52)
X3i Normal(0, 102)
X4i Bernoulli(pi = e

2X1i
/(1 + e

2X1i)) where E[pi] = 0.5
X5i Bernoulli(p = 0.2)
X6i Multinomial(p = (0.5, 0.3, 0.1, 0.05, 0.05)T )
X7i sin(X1i)
X8i X

2
2i

X9i X3i ⇥X4i

X10i X4i ⇥X5i

1.3 Treatment Generating Model

As there were three treatment groups, two relative probabilities were jointly modeled by two simultaneous
models (essentially multinomial logistic model).

⌘T1i = log

✓
P (Ti = 1|Xi = xi)

P (Ti = 0|Xi = xi)

◆
= ↵10 +↵T

1Xxi

⌘T2i = log

✓
P (Ti = 2|Xi = xi)

P (Ti = 0|Xi = xi)

◆
= ↵20 +↵T

2Xxi

where

↵10,↵20 determine treatment prevalence

↵1X ,↵2X determine covariate-treatment association

Importantly, the covariate-treatment association is inversely correlated with the covariate overlap in these
model. This is because if patient characteristics play more important roles in treatment decision, the treatment
assignment is less random.
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To obtain the three predicted probabilities (true propensity scores) from the two linear predictors, we
conducted the following normalization process[2, 3].

e0i = P (Ti = 0|Xi = xi) =
1

qi

e1i = P (Ti = 1|Xi = xi) =
exp(⌘T1i)

qi

e2i = P (Ti = 2|Xi = xi) =
exp(⌘T2i)

qi

where qi = 1 + exp(⌘T1i) + exp(⌘T2i)

Finally, the treatment level was assigned in a multinomial random number generating process.

Ti ⇠ Multinomial
�
n = 1,p = (e0i, e1i, e2i)

T
�

1.4 Outcome Generating Model

The log probability of disease was generated using a log-linear (log-probability) model to avoid the non-
collapsibility issue of the logistic model.

⌘Y i = log(P (Yi = 1|Ti = ti,Xi = xi)) = �0 + �T
Xxi + �T1I(ti = 1) + �T2I(ti = 2) + �XT1x4iI(ti = 1) + �XT2x4iI(ti = 2)

where

ti = Assigned treatment

�0 = Intercept determining baseline disease risk

�X = E↵ects of ten covariates (risk factors) on disease risk

�T1 = Main e↵ect of Treatment 1 compared to Treatment 0

�T2 = Main e↵ect of Treatment 2 compared to Treatment 0

�XT1 = Additional e↵ect for Treatment 1 vs 0 among X4i = 1

�XT2 = Additional e↵ect for Treatment 2 vs 0 among X4i = 1

Using this linear predictor, the probability of disease was calculated as follows.

pY i = P (Yi = 1|Ti = ti,Xi = xi) = exp(⌘Y i)

Then the outcome was assigned using a Bernoulli random number generating process.

Yi ⇠ Bernoulli (pY i)

The counterfactual probability of disease under each treatment was defined as follows.

pY i(0) = P (Yi = 1|Ti = 0,Xi = xi)

pY i(1) = P (Yi = 1|Ti = 1,Xi = xi)

pY i(2) = P (Yi = 1|Ti = 2,Xi = xi)
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1.5 Parameter Settings

The parameters were assinged as follows.

1.5.1 Treatment Generating Model

All possible combinations of three treatment prevalences and two levels of covariate overlap (inverse of
covariate-treatment association) were generated as follows (6 combinations).

Treatment Prevalence
33:33:33 10:45:45 10:10:80

Covariate Overlap
Good Poor Good Poor Good Poor

↵1 ↵2 ↵1 ↵2 ↵1 ↵2 ↵1 ↵2 ↵1 ↵2 ↵1 ↵2

Intercept -0.13 -0.26 -0.75 -3.75 1.30 1.18 1.55 -0.65 -0.10 1.87 0.60 1.70
X1 0.05 0.10 0.80 1.60 0.05 0.10 0.80 1.60 0.05 0.10 0.80 1.60
X2 0.00 0.01 0.06 0.12 0.00 0.01 0.06 0.12 0.00 0.01 0.06 0.12
X3 0.00 0.01 0.06 0.12 0.00 0.01 0.06 0.12 0.00 0.01 0.06 0.12
X4 0.09 0.19 1.50 3.00 0.09 0.19 1.50 3.00 0.09 0.19 1.50 3.00
X5 0.09 0.19 1.50 3.00 0.09 0.19 1.50 3.00 0.09 0.19 1.50 3.00
X6 0.03 0.05 0.40 0.80 0.03 0.05 0.40 0.80 0.03 0.05 0.40 0.80
X7 0.05 0.10 0.80 1.60 0.05 0.10 0.80 1.60 0.05 0.10 0.80 1.60
X8 0.00 0.01 0.04 0.08 0.00 0.01 0.04 0.08 0.00 0.01 0.04 0.08
X9 0.01 0.01 0.08 0.16 0.01 0.01 0.08 0.16 0.01 0.01 0.08 0.16
X10 0.06 0.12 1.00 2.00 0.06 0.12 1.00 2.00 0.06 0.12 1.00 2.00

where ↵1 = (↵10,↵T
1X)T and ↵2 = (↵20,↵T

2X)T .

1.5.2 Outcome Generating Model

The outcome generating model parameters were the following.

Two types of baseline risks

�0 2 {log(0.05), log(0.20)} , i.e., 5% and 20% baseline risk

One type of covariate-outcome association

�X = (0.160, 0.012, 0.012, 0.300, 0.300, 0.080, 0.160, 0.008, 0.016, 0.200)T

Null or non-null treatment (main) e↵ects

�T = (�T1,�T2)
T 2

�
(0, 0)T , (log(0.9), log(0.6))T

 

For the non-null case:

relative risk of 0.9 comparing Treatment 1 vs 0

relative risk of 0.6 comparing Treatment 2 vs 0

=) relative risk of 6/9 comparing Treatment 2 vs 1

Null or non-null treatment e↵ect modification

�XT = (�XT1,�XT2)
T 2

�
(0, 0)T , (log(0.7), log(0.5))T

 

For the non-null case:

additional 0.7⇥ risk reduction among X5i = 1 for Treatment 1 vs 0

additional 0.5⇥ risk reduction among X5i = 1 for Treatment 2 vs 0

=) additional 5/7⇥ risk reduction among X5i = 1 for Treatment 2 vs 1

There are thus, 2⇥ 1⇥ 2⇥ 2 = 8 combinations of the outcome generating model parameters
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1.6 Simulation scenarios

There are 6⇥ 8 = 48 total simulation scenarios numbered as follows.

Scenario N E↵ect modification Main e↵ects Baseline risk Group sizes Covariate overlap
1 6000 Modification (-) Null main e↵ects 0.05 33:33:33 Good overlap
2 6000 Modification (-) Null main e↵ects 0.05 33:33:33 Poor overlap
3 6000 Modification (-) Null main e↵ects 0.05 10:45:45 Good overlap
4 6000 Modification (-) Null main e↵ects 0.05 10:45:45 Poor overlap
5 6000 Modification (-) Null main e↵ects 0.05 10:10:80 Good overlap
6 6000 Modification (-) Null main e↵ects 0.05 10:10:80 Poor overlap
7 6000 Modification (-) Null main e↵ects 0.2 33:33:33 Good overlap
8 6000 Modification (-) Null main e↵ects 0.2 33:33:33 Poor overlap
9 6000 Modification (-) Null main e↵ects 0.2 10:45:45 Good overlap

10 6000 Modification (-) Null main e↵ects 0.2 10:45:45 Poor overlap
11 6000 Modification (-) Null main e↵ects 0.2 10:10:80 Good overlap
12 6000 Modification (-) Null main e↵ects 0.2 10:10:80 Poor overlap
13 6000 Modification (-) Non-null main e↵ects 0.05 33:33:33 Good overlap
14 6000 Modification (-) Non-null main e↵ects 0.05 33:33:33 Poor overlap
15 6000 Modification (-) Non-null main e↵ects 0.05 10:45:45 Good overlap
16 6000 Modification (-) Non-null main e↵ects 0.05 10:45:45 Poor overlap
17 6000 Modification (-) Non-null main e↵ects 0.05 10:10:80 Good overlap
18 6000 Modification (-) Non-null main e↵ects 0.05 10:10:80 Poor overlap
19 6000 Modification (-) Non-null main e↵ects 0.2 33:33:33 Good overlap
20 6000 Modification (-) Non-null main e↵ects 0.2 33:33:33 Poor overlap
21 6000 Modification (-) Non-null main e↵ects 0.2 10:45:45 Good overlap
22 6000 Modification (-) Non-null main e↵ects 0.2 10:45:45 Poor overlap
23 6000 Modification (-) Non-null main e↵ects 0.2 10:10:80 Good overlap
24 6000 Modification (-) Non-null main e↵ects 0.2 10:10:80 Poor overlap
25 6000 Modification (+) Null main e↵ects 0.05 33:33:33 Good overlap
26 6000 Modification (+) Null main e↵ects 0.05 33:33:33 Poor overlap
27 6000 Modification (+) Null main e↵ects 0.05 10:45:45 Good overlap
28 6000 Modification (+) Null main e↵ects 0.05 10:45:45 Poor overlap
29 6000 Modification (+) Null main e↵ects 0.05 10:10:80 Good overlap
30 6000 Modification (+) Null main e↵ects 0.05 10:10:80 Poor overlap
31 6000 Modification (+) Null main e↵ects 0.2 33:33:33 Good overlap
32 6000 Modification (+) Null main e↵ects 0.2 33:33:33 Poor overlap
33 6000 Modification (+) Null main e↵ects 0.2 10:45:45 Good overlap
34 6000 Modification (+) Null main e↵ects 0.2 10:45:45 Poor overlap
35 6000 Modification (+) Null main e↵ects 0.2 10:10:80 Good overlap
36 6000 Modification (+) Null main e↵ects 0.2 10:10:80 Poor overlap
37 6000 Modification (+) Non-null main e↵ects 0.05 33:33:33 Good overlap
38 6000 Modification (+) Non-null main e↵ects 0.05 33:33:33 Poor overlap
39 6000 Modification (+) Non-null main e↵ects 0.05 10:45:45 Good overlap
40 6000 Modification (+) Non-null main e↵ects 0.05 10:45:45 Poor overlap
41 6000 Modification (+) Non-null main e↵ects 0.05 10:10:80 Good overlap
42 6000 Modification (+) Non-null main e↵ects 0.05 10:10:80 Poor overlap
43 6000 Modification (+) Non-null main e↵ects 0.2 33:33:33 Good overlap
44 6000 Modification (+) Non-null main e↵ects 0.2 33:33:33 Poor overlap
45 6000 Modification (+) Non-null main e↵ects 0.2 10:45:45 Good overlap
46 6000 Modification (+) Non-null main e↵ects 0.2 10:45:45 Poor overlap
47 6000 Modification (+) Non-null main e↵ects 0.2 10:10:80 Good overlap
48 6000 Modification (+) Non-null main e↵ects 0.2 10:10:80 Poor overlap
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1 Aim

This document provides a step-by-step guide for implementation of matching weight method in practice.
The example is in the three-group setting. However, the essentially the same code can be used in the two-group
setting or settings where there are more than three groups. The example is written in R, but it can be implemented
in any statistical environment that has (multinomial) logistic regression and weighted data analysis capabilities.

2 Dataset

The tutoring dataset included in the TriMatch R package is used. The exposure is the treat variable,
which takes one of Treat1, Treat2, and Control. These represent the tutoring method each student received.
The outcome is the Grade ordinal variable, which takes one of 0, 1, 2, 3, or 4. Pre-treatment potential confounders
include gender, ethnicity, military service status of the student, non-native English speaker status, education level
of the subject’s mother (ordinal), education level of the subject’s father (ordinal), age of the student, employment
status (no, part-time, full-time), household income (ordinal), number of transfer credits, grade point average. The
dataset does not contain any missing values. See ?tutoring for details. The employment categorical variable is
coded numerically. Thus, it is converted to a factor.

## Load data
library(TriMatch)
data(tutoring)
summary(tutoring)

## treat Course Grade Gender Ethnicity Military
## Control:918 Length:1142 Min. :0.000 FEMALE:627 Black:211 Mode :logical
## Treat1 :134 Class :character 1st Qu.:2.000 MALE :515 Other:193 FALSE:783
## Treat2 : 90 Mode :character Median :4.000 White:738 TRUE :359
## Mean :2.891 NA's :0
## 3rd Qu.:4.000
## Max. :4.000
## ESL EdMother EdFather Age Employment Income
## Mode :logical Min. :1.000 Min. :1.000 Min. :20.00 Min. :1.000 Min. :1.000
## FALSE:1049 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:30.00 1st Qu.:3.000 1st Qu.:3.000
## TRUE :93 Median :3.000 Median :3.000 Median :37.00 Median :3.000 Median :5.000
## NA's :0 Mean :3.785 Mean :3.684 Mean :36.92 Mean :2.667 Mean :5.059
## 3rd Qu.:5.000 3rd Qu.:5.000 3rd Qu.:43.00 3rd Qu.:3.000 3rd Qu.:7.000
## Max. :8.000 Max. :9.000 Max. :65.00 Max. :3.000 Max. :9.000
## Transfer GPA GradeCode Level ID
## Min. : 3.00 Min. :0.000 Length:1142 Lower:988 Min. : 1.0
## 1st Qu.: 36.66 1st Qu.:2.890 Class :character Upper:154 1st Qu.: 286.2
## Median : 48.31 Median :3.215 Mode :character Median : 571.5
## Mean : 52.12 Mean :3.166 Mean : 571.5
## 3rd Qu.: 65.00 3rd Qu.:3.518 3rd Qu.: 856.8
## Max. :126.00 Max. :4.000 Max. :1142.0

## Make employment categorical
tutoring$Employment <- factor(tutoring$Employment, levels = 1:3,

labels = c("no","part-time","full-time"))

3 Pre-weighting balance assessment

The tableone package can be utilized for covariate balance assessment using standardized mean di↵er-
ences (SMD). SMD greater than 0.1 is often regarded as a substantial imbalance. The SMD shown in the table is
the average of all possible pairwise SMDs.

## Examine covariate balance
library(tableone)
covariates <- c("Gender", "Ethnicity", "Military", "ESL",

"EdMother", "EdFather", "Age", "Employment",
"Income", "Transfer", "GPA")

tab1Unadj <- CreateTableOne(vars = covariates, strata = "treat", data = tutoring)
print(tab1Unadj, test = FALSE, smd = TRUE)

## Stratified by treat
## Control Treat1 Treat2 SMD
## n 918 134 90
## Gender = MALE (%) 449 (48.9) 38 (28.4) 28 (31.1) 0.287
## Ethnicity (%) 0.095
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## Black 166 (18.1) 24 (17.9) 21 (23.3)
## Other 157 (17.1) 23 (17.2) 13 (14.4)
## White 595 (64.8) 87 (64.9) 56 (62.2)
## Military = TRUE (%) 309 (33.7) 32 (23.9) 18 (20.0) 0.208
## ESL = TRUE (%) 76 ( 8.3) 8 ( 6.0) 9 (10.0) 0.100
## EdMother (mean (sd)) 3.80 (1.49) 3.78 (1.51) 3.67 (1.54) 0.057
## EdFather (mean (sd)) 3.68 (1.65) 3.66 (1.73) 3.78 (1.73) 0.044
## Age (mean (sd)) 36.75 (8.95) 37.10 (9.41) 38.41 (9.49) 0.119
## Employment (%) 0.248
## no 95 (10.3) 24 (17.9) 18 (20.0)
## part-time 75 ( 8.2) 20 (14.9) 11 (12.2)
## full-time 748 (81.5) 90 (67.2) 61 (67.8)
## Income (mean (sd)) 5.10 (2.24) 5.04 (2.60) 4.69 (2.51) 0.111
## Transfer (mean (sd)) 51.40 (24.38) 57.37 (25.10) 51.61 (26.39) 0.158
## GPA (mean (sd)) 3.16 (0.58) 3.16 (0.46) 3.24 (0.58) 0.097

## Examine all pairwise SMDs
ExtractSmd(tab1Unadj)

## average 1 vs 2 1 vs 3 2 vs 3
## Gender 0.28718081 0.431825669 0.369462797 0.06025398
## Ethnicity 0.09475231 0.004540496 0.137619463 0.14209699
## Military 0.20773590 0.217301900 0.312032587 0.09387322
## ESL 0.09955894 0.089842245 0.059753148 0.14908142
## EdMother 0.05735067 0.014182489 0.086066827 0.07180268
## EdFather 0.04433253 0.007919139 0.059274560 0.06580389
## Age 0.11889003 0.038429226 0.179969129 0.13827175
## Employment 0.24838203 0.332479394 0.324590337 0.08807636
## Income 0.11113230 0.025003114 0.171951403 0.13644238
## Transfer 0.15777889 0.241327245 0.008454888 0.22355453
## GPA 0.09651297 0.009213587 0.128230886 0.15209444

4 Propensity score modeling

As the exposure is a three-category variable, the propensity score model can be modeled using multinomial
logistic regression. In R, the VGAM (vector generalized linear and additive models) package provides a flexible
framework for this. Because the sample size of the treatment 2 group is small, making flexible modeling di�cult,
the ordinal variables are used only as linear terms. Predicting the “response” gives predicted probabilities of each
treatment as a (sample size) ⇥ 3 matrix, which then can be added to the dataset. The following AddGPS function
can be used to ease this process. Three propensity scores (one for each treatment category) are added to the dataset.

## Function to add generalized PS to dataset
AddGPS <- function(data, formula, family = multinomial(), psPrefix = "PS_") {

library(VGAM)
## Fit multinomial logistic regression
resVglm <- vglm(formula = formula, data = data, family = family)
## Calculate PS
psData <- as.data.frame(predict(resVglm, type = "response"))
names(psData) <- paste0(psPrefix, names(psData))
cbind(data, psData)

}

tutoring <- AddGPS(data = tutoring, # dataset
## Propensity score model for multinomial regression
formula = treat ˜ Gender + Ethnicity + Military +

ESL + EdMother + EdFather + Age +
Employment + Income + Transfer + GPA)

5 Weight creation

As mentioned in the text, the matching weight is defined as follows.

MWi =
Smallest PS

PS of assigned treatment

=
min(e1i, ..., eKi)PK
k=1 I(Zi = k)eki
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where eki is the i-th individual’s probability of being assigned to the k-th treatment category given the
covariate pattern, Zi 2 {1, ...,K} is the categorical variable indicating the i-th individual’s treatment assignment.

The following function can be used to add matching weight to the dataset. Individuals’ matching weights
have a range of [0,1], where as the inverse probability treatment weights have a range of [1,1].

## Function to add matching weight as mw to dataset
AddMwToData <- function(data, txVar, txLevels, psPrefix = "PS_") {

## Treatment indicator data frame (any number of groups allowed)
dfAssign <- as.data.frame(lapply(txLevels, function(tx_k) {

as.numeric(data[txVar] == tx_k)
}))
## Name of PS variables
psVars <- paste0(psPrefix, txLevels)
## Pick denominator (PS for assigned treatment)
data$PS_assign <- rowSums(data[psVars] * dfAssign)
## Pick numerator
data$PS_min <- do.call(pmin, data[psVars])
## Calculate the IPTW
data$iptw <- 1 / data$PS_assign
## Calculate the matching weight
data$mw <- exp(log(data$PS_min) - log(data$PS_assign))
## Return the whole data
data

}

## Add IPTW and MW
tutoring <- AddMwToData(data = tutoring, # dataset

txVar = "treat", # treatment variable name
tx = c("Control", "Treat1", "Treat2")) # treatment levels

## Check how weights are defined
head(tutoring[c("treat","PS_Control","PS_Treat1","PS_Treat2","PS_assign","PS_min","iptw","mw")], 20)

## treat PS_Control PS_Treat1 PS_Treat2 PS_assign PS_min iptw mw
## 3 Control 0.8192816 0.11440448 0.06631388 0.81928164 0.06631388 1.220581 0.08094149
## 4 Control 0.8313205 0.10516348 0.06351606 0.83132046 0.06351606 1.202906 0.07640383
## 11 Control 0.6346235 0.22597339 0.13940309 0.63462352 0.13940309 1.575737 0.21966266
## 12 Control 0.7203265 0.11853269 0.16114082 0.72032649 0.11853269 1.388259 0.16455412
## 14 Control 0.6759314 0.15931947 0.16474916 0.67593137 0.15931947 1.479440 0.23570361
## 16 Treat1 0.7278386 0.18054526 0.09161616 0.18054526 0.09161616 5.538777 0.50744155
## 17 Control 0.7963014 0.09228518 0.11141339 0.79630143 0.09228518 1.255806 0.11589227
## 18 Control 0.7963014 0.09228518 0.11141339 0.79630143 0.09228518 1.255806 0.11589227
## 19 Control 0.4011609 0.29293705 0.30590201 0.40116094 0.29293705 2.492765 0.73022327
## 23 Control 0.7980564 0.14170696 0.06023666 0.79805638 0.06023666 1.253044 0.07547920
## 28 Treat2 0.7696177 0.11208565 0.11829667 0.11829667 0.11208565 8.453323 0.94749620
## 31 Treat1 0.7876534 0.11912070 0.09322587 0.11912070 0.09322587 8.394847 0.78261688
## 32 Control 0.7602112 0.13218394 0.10760486 0.76021120 0.10760486 1.315424 0.14154600
## 34 Treat2 0.6994628 0.12694918 0.17358797 0.17358797 0.12694918 5.760768 0.73132478
## 38 Treat1 0.6359332 0.24401948 0.12004734 0.24401948 0.12004734 4.098034 0.49195804
## 39 Control 0.7523881 0.15006473 0.09754713 0.75238814 0.09754713 1.329101 0.12965001
## 40 Control 0.8281320 0.11921012 0.05265789 0.82813199 0.05265789 1.207537 0.06358635
## 49 Treat1 0.7963180 0.09950924 0.10417277 0.09950924 0.09950924 10.049318 1.00000000
## 50 Control 0.8929612 0.06199434 0.04504442 0.89296124 0.04504442 1.119869 0.05044387
## 51 Control 0.6910650 0.16455995 0.14437500 0.69106505 0.14437500 1.447042 0.20891666

## Check weight distribution
summary(tutoring[c("mw","iptw")])

## mw iptw
## Min. :0.01025 Min. : 1.052
## 1st Qu.:0.05546 1st Qu.: 1.154
## Median :0.09410 Median : 1.258
## Mean :0.21706 Mean : 3.066
## 3rd Qu.:0.17721 3rd Qu.: 1.465
## Max. :1.00000 Max. :46.446

17



Matching Weights Tutorial 2016–05–24

6 Post-weighting balance assessment

All analyses afterward should be proceeded as weighted analyses. In R, this is most easily achieved by using
the survey package. Firstly, a survey design object must be created with svydesign function. The resulting
object is then used as the dataset. The weighted covariate table can be constructed with the tableone package.
All SMDs are less than 0.1 after weighting, indicating better covariate balance.

## Created weighted data object
library(survey)
tutoringSvy <- svydesign(ids = ˜ 1, data = tutoring, weights = ˜ mw)

## Weighted table with tableone
tab1Mw <- svyCreateTableOne(vars = covariates, strata = "treat", data = tutoringSvy)
print(tab1Mw, test = FALSE, smd = TRUE)

## Stratified by treat
## Control Treat1 Treat2 SMD
## n 82.8 82.6 82.5
## Gender = MALE (%) 24.9 (30.1) 25.0 (30.3) 24.4 (29.6) 0.010
## Ethnicity (%) 0.010
## Black 18.9 (22.9) 19.2 (23.3) 18.8 (22.8)
## Other 11.7 (14.1) 11.3 (13.7) 11.6 (14.1)
## White 52.2 (63.0) 52.1 (63.1) 52.0 (63.0)
## Military = TRUE (%) 17.2 (20.8) 19.7 (23.8) 17.4 (21.1) 0.048
## ESL = TRUE (%) 6.1 ( 7.4) 6.4 ( 7.7) 8.1 ( 9.8) 0.056
## EdMother (mean (sd)) 3.66 (1.49) 3.65 (1.47) 3.65 (1.55) 0.006
## EdFather (mean (sd)) 3.71 (1.70) 3.66 (1.75) 3.73 (1.70) 0.024
## Age (mean (sd)) 38.13 (9.68) 38.21 (9.63) 38.01 (9.38) 0.014
## Employment (%) 0.041
## no 16.3 (19.7) 15.6 (18.9) 15.2 (18.4)
## part-time 10.2 (12.3) 9.2 (11.2) 10.5 (12.7)
## full-time 56.3 (68.0) 57.7 (69.9) 56.8 (68.9)
## Income (mean (sd)) 4.76 (2.35) 4.72 (2.47) 4.80 (2.47) 0.023
## Transfer (mean (sd)) 52.46 (24.04) 51.39 (25.02) 53.48 (26.19) 0.055
## GPA (mean (sd)) 3.21 (0.49) 3.21 (0.45) 3.21 (0.59) 0.004

## All pairwise SMDs
ExtractSmd(tab1Mw)

## average 1 vs 2 1 vs 3 2 vs 3
## Gender 0.010336859 0.004393687 0.0111115330 0.0155053556
## Ethnicity 0.009595945 0.013881066 0.0006174629 0.0142893048
## Military 0.047738733 0.071609306 0.0067821033 0.0648247896
## ESL 0.055666107 0.010019487 0.0834804231 0.0734984115
## EdMother 0.005765913 0.008755059 0.0082762793 0.0002663992
## EdFather 0.023721214 0.024874520 0.0107632204 0.0355259006
## Age 0.013982735 0.008033386 0.0128645704 0.0210502478
## Employment 0.040896810 0.043102022 0.0330741322 0.0465142771
## Income 0.023351441 0.019691181 0.0157469189 0.0346162234
## Transfer 0.055073782 0.043293809 0.0406028456 0.0813246930
## GPA 0.003834104 0.006104611 0.0018132523 0.0035844491

Visualizing the covariate balance before and after weighting can sometimes be helpful. Extracted SMD
data can be fed to a plotting function (here ggplot2).

## Create SMD data frame
dataPlot <- data.frame(variable = rownames(ExtractSmd(tab1Unadj)),

Unadjusted = ExtractSmd(tab1Unadj)[,"average"],
Weighted = ExtractSmd(tab1Mw)[,"average"])

## Reshape to long format
library(reshape2)
dataPlotMelt <- melt(data = dataPlot,

id.vars = "variable",
variable.name = "method",
value.name = "SMD")

## Variables names ordered by unadjusted SMD values
varsOrderedBySmd <- rownames(dataPlot)[order(dataPlot[,"Unadjusted"])]
## Reorder factor levels
dataPlotMelt$variable <- factor(dataPlotMelt$variable,

levels = varsOrderedBySmd)
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dataPlotMelt$method <- factor(dataPlotMelt$method,
levels = c("Weighted","Unadjusted"))

## Plot
library(ggplot2)
ggplot(data = dataPlotMelt, mapping = aes(x = variable, y = SMD, group = method, linetype = method)) +

geom_line() +
geom_point() +
geom_hline(yintercept = 0, size = 0.3) +
geom_hline(yintercept = 0.1, size = 0.1) +
coord_flip() +
theme_bw() + theme(legend.key = element_blank())
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7 Outcome analysis

The outcome analyses should also be proceeded as weighted analyses. Most functions in the survey
package is named svy* with * being the name of the unweighted counterpart.

The outcome was handled as a continuous outcome for simplicity. In weighted linear regression, both
treatments appear superior to the control without tutoring regarding the course grade assuming the propensity
score model was correctly specified. The mean di↵erence was 0.45 [0.23, 0.67] for treatment 1 vs control and 0.67
[0.45, 0.89] for treatment 2 vs control.

## Weighted group means of Grade
svyby(formula = ˜ Grade, by = ˜ treat, design = tutoringSvy, FUN = svymean)

## treat Grade se
## Control Control 2.792759 0.06648740
## Treat1 Treat1 3.244832 0.09179853
## Treat2 Treat2 3.463329 0.09070431

## Group difference tested in weighted regression
modelOutcome1 <- svyglm(formula = Grade ˜ treat, design = tutoringSvy)
summary(modelOutcome1)

##
## Call:
## svyglm(formula = Grade ˜ treat, design = tutoringSvy)
##
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## Survey design:
## svydesign(ids = ˜1, data = tutoring, weights = ˜mw)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.79276 0.06649 42.004 < 2e-16 ***
## treatTreat1 0.45207 0.11335 3.988 0.00007076303 ***
## treatTreat2 0.67057 0.11246 5.963 0.00000000331 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1.394533)
##
## Number of Fisher Scoring iterations: 2

## ShowRegTable in tableone may come in handy
ShowRegTable(modelOutcome1, exp = FALSE)

## coef [confint] p
## (Intercept) 2.79 [2.66, 2.92] <0.001
## treatTreat1 0.45 [0.23, 0.67] <0.001
## treatTreat2 0.67 [0.45, 0.89] <0.001

8 Bootstrapping

As discussed in the text, bootstrapping may provide better variance estimates than model-based inference.
The boot package is a general purpose bootstrapping package. The following context-specific wrapper functions
can be used to simplify the process. In this specific example, the bootstrap confidence intervals for the treatment
e↵ects were somewhat narrower.

## Define a function for each bootstrap step
BootModelsConstructor <- function(formulaPs, formulaOutcome, OutcomeRegFun, ...) {

## Obtain treatment variable name
txVar <- as.character(formulaPs[[2]])
## Return a function
function(data, i) {

## Obtain treatment levels
txLevels <- names(table(data[,txVar]))
## Add generalized propensity scores
dataB <- AddGPS(data = data[i,], formula = formulaPs)
## Add matching weight
dataB <- AddMwToData(data = dataB, txVar = txVar, txLevels = txLevels)
## Weighted analysis (lm() ok as only the estimates are used)
lmWeighted <- OutcomeRegFun(formula = formulaOutcome, data = dataB,

weights = mw, ...)
## Extract coefs
coef(lmWeighted)

}
}

## Define a function to summarize bootstrapping
BootSummarize <- function(data, R, BootModels, level = 0.95, ...) {

## Use boot library
library(boot)
## Run bootstrapping
outBoot <- boot(data = data, statistic = BootModels, R = R, ...)
out <- outBoot$t
colnames(out) <- names(outBoot$t0)
## Confidence intervals
lower <- apply(out, MARGIN = 2, quantile, probs = (1 - level) / 2)
upper <- apply(out, MARGIN = 2, quantile, probs = (1 - level) / 2 + level)
outCi <- cbind(lower = lower, upper = upper)
## Variance of estimator
outVar <- apply(out, MARGIN = 2, var)
outSe <- sqrt(outVar)
## Return as a readable table
cbind(est = outBoot$t0, outCi, var = outVar, se = outSe)

}
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Matching Weights Tutorial 2016–05–24

## Construct a custom bootstrap function with specific formulae
## formulaPs is propensity score model
BootModels <- BootModelsConstructor(formulaPs = treat ˜ Gender + Ethnicity + Military +

ESL + EdMother + EdFather + Age +
Employment + Income + Transfer + GPA,

## Outcome model
formulaOutcome = Grade ˜ treat,
## Regression function for outcome model
OutcomeRegFun = lm)

## Use a clean dataset without PS and weight variables
data(tutoring)
## Make employment categorical
tutoring$Employment <- factor(tutoring$Employment, levels = 1:3,

labels = c("no","part-time","full-time"))
## Run bootstrap
set.seed(201508131)
system.time(bootOut1 <- BootSummarize(data = tutoring, R = 2000, BootModels = BootModels))

## user system elapsed
## 191.394 5.377 208.653

bootOut1

## est lower upper var se
## (Intercept) 2.7927593 2.6130814 2.9872607 0.008972568 0.09472364
## treatTreat1 0.4520730 0.2325361 0.6577786 0.011831058 0.10877067
## treatTreat2 0.6705692 0.4626595 0.8484488 0.009776627 0.09887683

## Show naive confidence interval again
ShowRegTable(modelOutcome1, exp = FALSE, digits = 7)

## coef [confint] p
## (Intercept) 2.7927593 [2.6624464, 2.9230722] <0.001
## treatTreat1 0.4520730 [0.2299169, 0.6742290] <0.001
## treatTreat2 0.6705692 [0.4501465, 0.8909920] <0.001
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eFigure 1. Illustration of pre- and post-weighting or post-matching distributions of propensity score 
when the treatment prevalence is 20%. The solid line is the distribution of the propensity scores in the 
treated, and the dashed line is the distribution in the untreated. Matching and matching weight cohorts 
have a similar propensity score distribution, indicating that their estimands are similar. These cohorts 
are very similar to the original treated group (i.e., their estimands approximate the average treatment 
effect on the treated) although there is a minor attrition in the cohort in the high propensity score range 
(propensity score > 0.5). 

 
Abbreviations: IPTW: inverse probability of treatment weights. 
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eFigure 2. Comparison of bias (risk ratio / true risk ratio) between methods across 48 scenarios. The 
left half presents the constant treatment effect scenarios, whereas the right half presents treatment effect 
heterogeneity scenarios. Each three columns represent three treatment contrasts. Rows classify 
scenarios by good vs. poor covariate overlap levels and presence vs. absence of main effects. Each 
panel contains six lines classified by the exposure prevalence and the baseline risk. Matching weights 
and matching perform well in all scenarios; however, IPTW fails in the poor covariate overlap setting. 

 

Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: Inverse 
probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: Baseline risk of disease. 
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eFigure 3. Comparison of true risk ratios (estimands) between methods across 48 scenarios. Some 
scenarios have the same estimands and completely overlap. The left half presents the constant 
treatment effect scenarios, whereas the right half presents treatment effect heterogeneity scenarios. 
Each three columns represent three treatment contrasts. Rows classify scenarios by good vs. poor 
covariate overlap levels and presence vs. absence of main effects. Differences in estimands are only 
present in the treatment effect heterogeneity scenarios, particularly with poor covariate overlap and 
unbalanced treatment group sizes. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: Inverse 
probability of treatment weight cohort; pExpo: Exposure prevalence. 
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eFigure 4. Comparison of true variance of log risk ratios calculated across iterations between methods 
across 48 scenarios. The left half presents the constant treatment effect scenarios, whereas the right half 
presents treatment effect heterogeneity scenarios. Each three columns represent three treatment 
contrasts. Rows classify scenarios by good vs. poor covariate overlap levels and presence vs. absence 
of main effects. Each panel contains six lines classified by the exposure prevalence and the baseline 
risk. All methods performed well in the good covariate overlap scenarios; however, matching weights 
were most efficient in the poor covariate overlap scenarios (rows 2 and 4). Matching performed poorly 
in the poor covariate overlap with 10:45:45 exposure distribution, as there were often no events in 
Group 2 after matching. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: Inverse 
probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: baseline risk of disease 
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eFigure 5. Comparison of estimated variance of log risk ratios averaged across iterations between 
methods across 48 scenarios. The left half presents the constant treatment effect scenarios, whereas the 
right half presents treatment effect heterogeneity scenarios. Each three columns represent three 
treatment contrasts. Rows classify scenarios by good vs. poor covariate overlap levels and presence vs. 
absence of main effects. Each panel contains six lines classified by the exposure prevalence and the 
baseline risk. Results were similar to the true variance results. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: Inverse 
probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: baseline risk of disease 
  

Modification (−)

1v0

Modification (−)

2v0

Modification (−)

2v1

Modification (+)

1v0

Modification (+)

2v0

Modification (+)

2v1

●●
●

●
●●

●●
●

●●
●

●
●
●

●

●

●

●
●●

●

●

●

●●
●

●
●●

●●
●

●●
●

●
●
●

●

●

●

●
●●

●

●

●

●●● ●
●●

●●● ●●●

●
●●

●

●

●

●

●

●

●

●
●

●●● ●
●●

●●● ●●●

●
●●

●

●

●

●

●

●
●

●
●

●●● ●
●●

●●● ●●●

●●
●

●

●

●

●
●● ●●

●

●●● ●
●●

●●● ●●●

●●
●

●

●

●

●
●●

●
●

●

●●
●

●
●●

●●
●

●●
●

●
●
●

●

●

●

●
●●

●

●

●

●●
●

●
●●

●●
●

●●
●

●
●
●

●

●

●

●
●●

●

●

●

●●● ●
●●

●●● ●●●

●
●●

●

●

●

●

●

●

●
●
●

●●● ●
●
●

●●● ●●●

●
●●

●

●

●

●

●

●

●

●
●

●●● ●
●●

●●● ●●●

●●
●

●

●

●

●
●● ●

●

●

●●● ●
●
●

●●● ●●●

●●
●

●

●

●

●
●
● ●

●

●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

N
ull m

ain effects
N

ull m
ain effects

N
on−null m

ain effects
N

on−null m
ain effects

G
ood overlap

Poor overlap
G

ood overlap
Poor overlap

U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip U M Mw Ip

Es
tim

at
ed

 V
ar

ia
nc

e

pExpo 33:33:33 10:45:45 10:10:80

pDis ● 0.05 0.2



Yoshida K et al.  Matching Weights for Three-category Exposure 7/12/2016 

 27 

eFigure 6. Comparison of variance estimation methods for matching weights across 48 scenarios. The 
left half presents the constant treatment effect scenarios, whereas the right half presents treatment effect 
heterogeneity scenarios. Each three columns represent three treatment contrasts. Rows classify 
scenarios by good vs. poor covariate overlap levels and presence vs. absence of main effects. Each 
panel contains six lines classified by the exposure prevalence and the baseline risk. In good covariate 
overlap settings, the estimated variance and the bootstrap variance were both close to the true variance 
values. In the poor covariate overlap settings, however, the estimated variance was sometimes 
anti-conservative, whereas the bootstrap variance was more accurate or somewhat conservative. 

 
Abbreviations: Est.: Estimated variance; True: True variance calculated across iterations; Boot.: 
Bootstrap variance; pExpo: Exposure prevalence; pDis: baseline risk of disease 
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eFigure 7. Comparison of mean squared error of log risk ratios between methods across 48 scenarios. 
The left half presents the constant treatment effect scenarios, whereas the right half presents treatment 
effect heterogeneity scenarios. Each three columns represent three treatment contrasts. Rows classify 
scenarios by good vs. poor covariate overlap levels and presence vs. absence of main effects. Each 
panel contains six lines classified by the exposure prevalence and the baseline risk. All methods 
performed well in the good covariate overlap scenarios; however, matching weights were most robust 
in the poor covariate overlap scenarios (rows 2 and 4). Matching performed poorly in the poor 
covariate overlap with 10:45:45 exposure distribution, as there were often no events in Group 2 after 
matching. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: Inverse 
probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: Baseline risk of disease. 
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eFigure 8. Comparison of false positive probability in completely null treatment effect scenarios. 
Minor violation of the 0.05 expected false positive rate (false positive rates of 0.06-0.07) was seen in 
both matching weights and matching. IPTW made many false positives in the poor covariate overlap 
settings. These tests were based on the estimated variance. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: Inverse 
probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: baseline risk of disease 
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eFigure 9. Comparison of coverage probability of estimated confidence intervals between methods 
across 48 scenarios. The left half presents the constant treatment effect scenarios, whereas the right half 
presents treatment effect heterogeneity scenarios. Each three columns represent three treatment 
contrasts. Rows classify scenarios by good vs. poor covariate overlap levels and presence vs. absence 
of main effects. Each panel contains six lines classified by the exposure prevalence and the baseline 
risk. matching weights and matching performed similarly, whereas IPTW performed poorly in the poor 
covariate overlap settings. These confidence intervals were based on the estimated variance. 

 
Abbreviations: U: Unmatched cohort, M: Matched cohort; Mw: matching weight cohort; Ip: Inverse 
probability of treatment weight cohort; pExpo: Exposure prevalence; pDis: baseline risk of disease 
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eFigure 10. Standardized mean differences for each covariate averaged across three treatment contrasts 
in the unmatched, weighted, and matched cohort. Matching weights achieved the best covariate balance 
most consistently (24 of the 35 covariates) compared to three-way matching (6 covariates) and IPTW 
(5 covariates). 

 
Abbreviations: PPI: proton pump inhibitor; H2: histamine-2 receptor; SSRI: selective serotonin 
reuptake inhibitor; ACE: angiotensin converting enzyme; ARB: angiotensin receptor blocker; MW: 
matching weights; IPTW: Inverse probability of treatment weights. 
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eTable 1. Characteristics of unmatched, matched, and weighted cohorts for the variables that were least 
balanced (average standardized mean difference > 0.1). The MW and matched cohorts were similar in 
characteristics, confirming the notion that MW is a weighting analogue to matching. As expected from 
the definition of the common support (overlap area of all three groups), these two cohorts are most 
similar to the smallest group, i.e., the NSAIDs group in the unmatched cohort. The IPTW cohort had 
somewhat different characteristics with higher morbidity levels, most closely resembling the largest 
group, i.e., the opioids group. 

 nsNSAIDs	 Coxibs	 Opioids	 SMD	
Unmatched	    

 n	 4874	 6172	 12601	
 Charlson	score,	mean	(SD)	 1.59	(1.54)	 1.72	(1.53)	 2.17	(1.78)	 0.233	

Antithrombotic	use,	%	 14.4	 17.6	 27.7	 0.220	
No.	prescription	drugs,	mean	(SD)	 8.28	(4.69)	 8.55	(4.76)	 9.76	(5.38)	 0.197	
No.	days	in	hospital,	mean	(SD)	 1.85	(6.90)	 2.19	(6.86)	 4.18	(9.46)	 0.190	

White	race,	%	 84.6	 88	 92.4	 0.164	
Fracture,	%	 6.5	 7.2	 13.7	 0.161	

Loop	diuretic	use,	%	 21.3	 25.8	 31.3	 0.152	
Age,	mean	(SD)	 79.67	(7.03)	 80.87	(6.99)	 81.15	(7.17)	 0.140	

No.	physician	visits,	mean	(SD)	 8.72	(6.32)	 8.80	(5.99)	 10.08	(7.14)	 0.137	
Myocardial	infarction,	%	 5.2	 5.7	 9.6	 0.112	

Stroke,	%	 15.2	 16.1	 21.5	 0.110	
    

 Matched	    
 n	 4611	 4611	 4611	
 Charlson	score,	mean	(SD)	 1.62	(1.54)	 1.63	(1.52)	 1.61	(1.52)	 0.005	

Antithrombotic	use,	%	 15.1	 15.5	 15.8	 0.013	
No.	prescription	drugs,	mean	(SD)	 8.34	(4.70)	 8.33	(4.69)	 8.32	(4.71)	 0.003	
No.	days	in	hospital,	mean	(SD)	 1.89	(6.45)	 1.88	(6.54)	 1.94	(6.29)	 0.006	

White	race,	%	 86.9	 86.7	 86.6	 0.007	
Fracture,	%	 6.7	 6.9	 6.7	 0.005	

Loop	diuretic	use,	%	 22	 22	 22.6	 0.010	
Age,	mean	(SD)	 79.97	(6.97)	 79.96	(6.93)	 80.11	(6.92)	 0.014	

No.	physician	visits,	mean	(SD)	 8.76	(6.08)	 8.76	(5.93)	 8.66	(5.84)	 0.010	
Myocardial	infarction,	%	 5.4	 5.2	 5.6	 0.011	

Stroke,	%	 15.5	 15.6	 15.7	 0.002	
    

 Matching	weights	    
 n	 4633.49	 4635.71	 4618.71	
 Charlson	score,	mean	(SD)	 1.62	(1.53)	 1.61	(1.52)	 1.63	(1.53)	 0.008	

Antithrombotic	use,	%	 14.9	 14.8	 15.2	 0.007	
No.	prescription	drugs,	mean	(SD)	 8.32	(4.70)	 8.29	(4.67)	 8.35	(4.71)	 0.009	
No.	days	in	hospital,	mean	(SD)	 1.87	(6.37)	 1.78	(6.18)	 2.00	(6.99)	 0.022	

White	race,	%	 86.3	 86.4	 86.4	 0.002	
Fracture,	%	 6.7	 6.7	 6.7	 0.002	

Loop	diuretic	use,	%	 22	 21.8	 22.3	 0.007	
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Age,	mean	(SD)	 79.97	(6.95)	 79.95	(6.97)	 80.02	(6.95)	 0.007	
No.	physician	visits,	mean	(SD)	 8.72	(6.09)	 8.69	(6.01)	 8.76	(6.04)	 0.008	

Myocardial	infarction,	%	 5.3	 5.2	 5.4	 0.005	
Stroke,	%	 15.4	 15.4	 15.5	 0.002	

    
 IPTW	    
 n	 4926.58	 6187.8	 12585.04	
 Charlson	score,	mean	(SD)	 1.98	(1.70)	 1.94	(1.68)	 1.94	(1.69)	 0.016	

Antithrombotic	use,	%	 23.3	 22.5	 22.4	 0.014	
No.	prescription	drugs,	mean	(SD)	 9.27	(5.17)	 9.15	(5.15)	 9.17	(5.14)	 0.014	
No.	days	in	hospital,	mean	(SD)	 3.48	(8.96)	 3.35	(8.78)	 3.39	(9.82)	 0.010	

White	race,	%	 89.7	 89.7	 89.7	 0.001	
Fracture,	%	 11.2	 10.8	 10.6	 0.012	

Loop	diuretic	use,	%	 28.9	 27.9	 27.9	 0.015	
Age,	mean	(SD)	 80.89	(7.17)	 80.82	(7.11)	 80.81	(7.11)	 0.008	

No.	physician	visits,	mean	(SD)	 9.58	(6.82)	 9.49	(6.66)	 9.50	(6.75)	 0.008	
Myocardial	infarction,	%	 7.8	 7.7	 7.7	 0.002	

Stroke,	%	 19.4	 18.8	 18.9	 0.010	
 
 
Abbreviations: Matched: three-way matching; IPTW: inverse probability of treatment weights; 
Coxibs: COX-2 selective inhibitors; nsNSAIDs: non-selective nosteroidal anti-inflammatory drugs; 
SMD: standardized mean difference averaged across three pairwise contrasts 
 
 


